Medway Centre for Pharmaceutical Sciences
The group works on the development of novel therapies for various applications such as anticancer delivery and wound healing using advanced technologies to enhance efficacy and reduce risk to patients.
The Medway Centre for Pharmaceutical Science positions itself between discovery/biotech organisations and clinical research. Our goal is to use small quantities of chemical or biological active pharmaceutical ingredient (API) and advanced pharmaceutical sciences to produce formulations for toxicology and exploratory clinical development.
Core competencies
- Formulation development
- Analytical method development
- Stability testing
- Quality by design-based development
- Regulatory chemistry manufacturing and control
Related research
Explore the university's other research in this discipline.
Chemistry
Chemistry research at Greenwich has a strong biological, medicinal and synthetic theme, and its application into pharmaceutical and materials sciences disciplines.
Recent publications
Article
Shepherd-Gorringe, Monique A. M. , Pettit, Marie W., Hawkes, Frances M. (2024), Lethal and sublethal impacts of membrane-fed ivermectin are concentration-dependant in Anopheles coluzzii. BMC. In: , , , . BMC, Parasites and Vectors, 17: 228 1756-3305 (Online) (doi: https://doi.org/10.1186/s13071-024-06287-5).
Scognamiglio, Pasqualina Liana , Riccardi, Claudia, Palumbo, Rosanna, Gale, Thomas F. , Musumeci, Domenica , Roviello, Giovanni N. (2023), Self-assembly of thyminyl l-tryptophanamide (TrpT) building blocks for the potential development of drug delivery nanosystems. Springer. In: , , , . Springer, Journal of Nanostructure in Chemistry, 2023 . pp. 1-19 ISSN: 2008-9244 (Print), 2193-8865 (Online) (doi: https://doi.org/10.1007/s***********0523-7).
Veeravalli, Sunil , Varshavi, Dorsa, Scott, Flora H, Varshavi, Dorna , Pullen, Francis , Veselkov, Kirill , Phillips, Ian R , Everett, Jeremy , Shephard, Elizabeth (2022), Treatment of wild-type mice with 2,3-butanediol, a urinary biomarker of Fmo5-/- mice, decreases plasma cholesterol and epididymal fat deposition. Frontiers Media SA. In: , , , . Frontiers Media SA, Frontiers in Physiology, 13: 859681 . pp. 1-13 1664-042X (Online) (doi: https://doi.org/10.3389/fphys.2022.859681).
Devonport, Jack , Sully, Lauren, Boudalis, Athanassios K., Hassell-Hart, Storm , Leech, Matthew C. , Lam, Kevin , Abdul-Sada, Alaa , Tizzard, Graham J. , Coles, Simon J. , Spencer Evans, John (2021), Room temperature Cu(II) radical-triggered Alkyne C−H activation. American Chemical Society. In: , , , . American Chemical Society, Journal of the American Chemical Society AU ISSN: 2691-3704 (Print), 2691-3704 (Online) (doi: https://doi.org/10.1021/jacsau.1c00310).
Conference item
Garg, Vivek , Deng, Tong, Sousa, Lucas Massaro, Bradley, Michael (2024), Evaluation of segregation of pharmaceutical formulations in direct compression process. In: 11th International Conference on Conveying and Handling of Particulate Solids, 2nd -4th Sep., 2024, Edinburgh , . , (doi: https://www.chops2024.ed.ac.uk/).
Patent
Leach, Michael and , Williams, Paul (2023), Diazine and triazine compounds to treat cytokine storm syndrome US 2023/0165869 A1. In: , , , . , (doi: https://patents.google.com/patent/US20230165869A1/en?oq=Diazine+and+triazine+compounds+to+treat+cytokine+storm+syndrome+US+2023%2f0165869+A1).
Leach, Michael and , Williams, Paul (2021), Diazine and triazine compounds to treat cytokine storm syndrome. In: , , , . , (doi: https://patents.google.com/patent/WO2016198878A1/ja).