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Lattice Boltzmann perspectives

The first LBE review article tells us that [Succi, Benzi, Higuera 1991]

“The LBE...does not result from the discretisation of
any partial differential equation!"

The “second generation" of LB is derived from “purely
microscopic considerations" and approximates the continuous
Boltzmann equation [Chen and Doolen 1998 (which has about 2500 citations!)]

This may suggest that the LBE can go “beyond" Navier-Stokes,
e.g capture the Knudsen layer in the transition regime - a view
also held in the most recent review article [Aidun and Clausen 2010]



The standard (D2Q9) lattice Boltzmann equation

This equation:

f i(x+ci∆t , t +∆t)−f i(x, t) = Ω(x, t)

is used to solve these equations:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + µ∇2u

∇ · u = 0



Lid-driven cavity flow: Re=7500



Roll-up of shear waves

Roll-up of shear layers in Minion & Brown [1997] test problem,

ux =

{
tanh(κ(y − 1/4)), y ≤ 1/2,
tanh(κ(3/4− y)), y > 1/2,

uy = δ sin(2π(x + 1/4)).



Roll-up of Shear wave with LBE
Re = 30,000, κ = 80 and δ = 0.05

On GPU: 600 MLUPS



Used in the automotive industry

Courtesy of Xflow [www.xflowcfd.com]



LBE for MHD Turbulence

18003 grid points,Superlinear scaling, 9.1 TFlops/s
Vahala et al, Commun. Comput. Phys, 4 (2008), 624-646



Velocity profile: Poiseuille flow, Re = 100

Using bounce–back boundary conditions, we appear to get an
accurate solution at moderate Re numbers . . .



Velocity profile: Poiseuille flow

. . . but not at smaller Reynolds numbers

• This is not Knudsen slip He et al. [1997]

• We should be able to get the exact solution
• More sophisticated boundary conditions can be used . . .



Overview

Derivation of the lattice Boltzmann equation
• From kinetic theory to hydrodynamics
• Matching moments: from continuous to discrete kinetic

theory
• From discrete Boltzmann to lattice Boltzmann

(PDEs to numerics)

Exact solutions of the D2Q9 LBE
• Boundary conditions
• Velocity field
• Deviatoric stress
• Implications for numerical stability

Summary



The kinetic theory of gases

The Navier-Stokes equations for a Newtonian fluid can be
derived from Boltzmann’s equation for a monotomic gas

∂f
∂t

+ c · ∇f = Ω(f )

where f = f (x,c, t) is the distribution function of particles at x
and t with velocity c:

Ω(f ) is Boltzmann’s binary collision operator.



Hydrodynamics from moments

Hydrodynamic quantities are moments of the distribution
function f :

ρ(x, t) =

∫
f (x,c, t)dc,

u(x, t) =
1
ρ

∫
cf (x,c, t)dc,

θ(x, t) =
1
3ρ

∫
|c− u|2f (x,c, t)dc.

The collision operator Ω(f ) drives f back to the
Maxwell-Boltzmann distribution

f (0) =
ρ

(2θπ)3/2 exp
(
−|c− u|2

2θ

)
.



From kinetic theory to fluid dynamics

Recall Boltzmann’s equation

∂f
∂t

+ c · ∇f = Ω(f )

Assume f relaxes towards f (0) with a single relaxation time τ :

∂f
∂t

+ c · ∇f = −1
τ

(
f − f (0)

)
The zeroth and first moments of the Boltzmann equation give
exact conservation laws:

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu
∂t

+∇ ·ΠΠΠ = 0



Evolution of the momentum flux

The momentum flux ΠΠΠ is given by another moment

ΠΠΠ =

∫
fccdc, and ΠΠΠ(0) =

∫
f (0)ccdc.

ΠΠΠ is not conserved by collisions. It evolves according to

∂ΠΠΠ

∂t
+∇ ·QQQ = −1

τ

(
ΠΠΠ−ΠΠΠ(0)

)
,

where
ΠΠΠ(0) = ρuu + ρθI, and QQQ =

∫
fcccdc.

Hydrodynamics follow by exploiting τ � T .



S. Chapman and T.G Cowling (1970)



"Reading this book is like chewing glass [S. Chapman]"



Discrete kinetic theory

Look to simplify Boltzmann’s equation without losing the
properties needed to recover the Navier-Stokes equation.

Discetise the velocity space such that c is confined to a set
c0,c1, . . . ,c9:

Instead of f (x,c, t) we have fi(x, t).



The discrete Boltzmann equation

The Boltzmann equation with discrete velocities is

∂fi
∂t

+ ci · ∇fi = −1
τ

(
fi − f (0)

i

)
We now supply the equilibrium function, for example

f (0)
i = Wiρ

(
1 +

1
θ

u · ci +
1

2θ2 (u · ci)
2 − 1

2θ
|u|2

)
The previous integrals are now replaced by summations:

ρ =
∑

i

fi =
∑

i

f (0)
i ,

ρu =
∑

i

fici =
∑

i

f (0)
i ci

ΠΠΠ(0) =
∑

i

f (0)
i cici = ρuu + θρI.



Moment equations

∂fi
∂t

+ ci · ∇fi = −1
τ

(
fi − f (0)

i

)
Taking the zeroth, first, and second moments of the discrete
Boltzmann equation give

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu
∂t

+ ∇ ·ΠΠΠ = 0,

∂ΠΠΠ

∂t
+ ∇ ·QQQ = −1

τ

(
ΠΠΠ−ΠΠΠ(0)

)
Note that we did exactly the same for the continuum Boltzmann
equation.



Chapman-Enskog expansion

Hydrodynamics now follows from seeking solutions to

∂fi
∂t

+ ci · ∇fi = −1
τ

(
fi − f (0)

i

)
that vary slowly compared with the timescale τ .

We assume fi is close to equilibrium and expand:

fi = f (0)
i + τ f (1)

i + τ2f (2)
i + . . .

Or, equivalently,

ΠΠΠ = ΠΠΠ(0) + τΠΠΠ(1) + τ2ΠΠΠ(2) . . . , QQQ = QQQ(0) + τQQQ(1) + τ2QQQ(2) . . .

Also expand the temporal derivative:

∂

∂t
=

∂

∂t0
+ τ

∂

∂t1
. . .



Hydrodynamics from moments

Substituting these expansions into the moment equations and
truncating at O(1) we obtain

∂ρ

∂t0
+ ∇ · (ρu) = 0,

∂ρu
∂t0

+ ∇ ·ΠΠΠ(0) = 0,

∂ΠΠΠ(0)

∂t0
+ ∇ ·QQQ(0) = −ΠΠΠ(1)

The first two equations coincide with the compressible Euler
equations if we choose

ΠΠΠ(0) = ρθI + ρuu



Calculating the viscous stress tensor

For the Navier-Stokes equation we need to compute the first
correction ΠΠΠ(1) to the momentum flux.

∂ΠΠΠ(0)

∂t0
+∇ ·QQQ(0) = −ΠΠΠ(1).

Given ΠΠΠ(0) = ρθI + ρuu we find (after a messy calculation)

∂t0Π
(0)
βγ = −θδβγ∂α(ρuα)− θuβ∂γρ− θuγ∂βρ− ∂α(ρuαuβuγ),

∂αQ(0)
αβγ = θδβγ∂α(ρuα) + θ∂β(ρuγ) + θ∂γ(ρuβ)



Assembling the Navier-Stokes equations

The viscous stress is then found to be

ΠΠΠ(1) = −ρθ
(
∇u + (∇u)T

)
+O(Ma3),

where Ma = |u|/cs is the Mach number (cs =
√
θ).

We have obtained the (compressible) Navier-Stokes equations

∂tρ+∇ · (ρu) = 0, ∂t (ρu) +∇ ·
(

ΠΠΠ(0) + τΠΠΠ(1)
)

= 0,

where the dynamic viscosity µ = τρθ.



From discrete Boltzmann to lattice Boltzmann

Integrating the discrete Boltzmann equation

∂fi
∂t

+ ci · ∇fi = Ωi(f )

along a characteristic for time ∆t gives

fi(x + ci∆t , t + ∆t)− fi(x , t) =

∫ ∆t

0
Ωi(x + cis, t + s) ds,

Approximating the integral by the trapezium rule yields

fi(x +ci∆t , t +∆t)−fi(x , t) =
∆t
2

(
Ωi(x +ci∆t , t +∆t)

+ Ωi(x , t)
)

+O
(

∆t3
)
.

This is an implicit system.



Change of Variables

To obtain a second order explicit LBE at time t + ∆t define

f i(x , t) = fi(x , t) +
∆t
2τ

(
fi(x , t)− f (0)

i (x , t)
)
.

The new algorithm is

f i(x + ci∆t , t + ∆t)− f i(x, t) = − ∆t
τ + ∆t/2

(
f i(x, t)− f (0)

i (x, t)
)

This could have also been obtained by Strang splitting Dellar [2011]



A quick note on forcing

A body force Ri in the discrete Boltzmann equation

∂fi
∂t

+ ci · ∇fi = −1
τ

(
fi − f (0)

i

)
+ Ri

should have the following moments:∑
i

Ri = 0,
∑

i

Rici = FFF ,
∑

i

Ricici = FFFu + uFFF

and implemented as

f i(x + ci∆t , t + ∆t)− f i(x , t)

= − ∆t
τ + ∆t/2

(
f i(x , t)− f (0)

i (x , t)
)

+
τ∆t

τ + ∆t/2
R i(x , t)



Analytic solution of the LBE

f i(x + ci∆t , t + ∆t)− f i(x , t)

= − ∆t
τ + ∆t/2

(
f i(x , t)− f (0)

i (x , t)
)

+
τ∆t

τ + ∆t/2
R i(x , t)

Consider flows satisfying

∂

∂x
=

∂

∂t
= 0, FFF = (ρG,0)

Walls located at j = 1 and j = n

Let f
j
i denote the the distribution function f i at node j ; similarly

for uj and vj . Then . . .



f
j
0 =

4ρ
9

(
1− 3

2

(
u2

j + v2
j

))
,

f
j
1 =

ρ

9

(
1 + 3uj + 3u2

j −
3v2

j

2

)
+
τρG

3
(
2uj + 1

)
,

f
j
2 =

ρ

9(τ + 1/2)

(
1 + 3vj−1 + 2v2

j−1 −
3u2

j−1

2

)
+
τ − 1/2
τ + 1/2

f
j−1
2 ,

f
j
3 =

ρ

9

(
1− 3uj + 3u2

j −
3v2

j

2

)
+
τρG

3
(
2uj − 1

)
,

f
j
4 =

ρ

9(τ + 1/2)

(
1− 3vj+1 + 3v2

j+1 −
3u2

j+1

2

)
− τ − 1/2
τ + 1/2

f
j+1
4 ,

f
j
5 =

ρ

36(τ + 1/2)

(
1 + 3uj−1 + 3vj−1 + 3u2

j−1 + 3v2
j−1 + 9uj−1vj−1

)
+

τρG
12(τ + 1/2)

(
1 + 2uj−1

)
+
τ − 1/2
τ + 1/2

f
j−1
5 ,



f
j
6 =

ρ

36(τ + 1/2)

(
1− 3uj−1 + 3vj−1 + 3u2

j−1 + 3v2
j−1 − 9uj−1vj−1

)
− τρG

12(τ + 1/2)

(
1− 2uj−1

)
+
τ − 1/2
τ + 1/2

f
j−1
6 ,

f
j
7 =

ρ

36(τ + 1/2)

(
1− 3uj+1 − 3vj+1 + 3u2

j+1 + 3v2
j+1 + 9uj+1vj+1

)
− τρG

12(τ + 1/2)

(
1− 2uj+1

)
+
τ − 1/2
τ + 1/2

f
j+1
7 ,

f
j
8 =

ρ

36(τ + 1/2)

(
1 + 3uj+1 − 3vj+1 + 3u2

j+1 + 3v2
j+1 − 9uj+1vj+1

)
+

τρG
12(τ + 1/2)

(
1 + 2uj+1

)
+
τ − 1/2
τ + 1/2

f
j+1
8 ,



Poiseuille flow

This recurrence relation reduces to

uj+1vj+1 − uj−1vj−1

2
= ν

(
uj+1 + uj−1 − 2uj

)
+ G,

This is the second order finite–difference form of the
incompressible Navier–Stokes equations with a constant body
force:

∂(uv)

∂y
= ν

∂2u
∂y2 + G



Solution of the difference equation

uj+1vj+1 − uj−1vj−1

2
= ν

(
uj+1 + uj−1 − 2uj

)
+ G

We can show ρ is constant and vj = 0

The solution to this second order difference equation is

uj =
4Uc

(n − 1)2 (j − 1)(n − j) + Us, j = 1,2, . . . ,n

where Uc = H2G/8ν is the centre-line velocity and H = (n − 1)
is the channel height.



Numerical slip for bounce–back

If we use bounce–back boundary conditions, we find the
numerical slip to be He et al. [1997]

Us =
48ν2 − 1

n2 Uc



Moments at a wall

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8,
ρux = f1 − f3 + f5 − f6 − f7 + f8,
ρuy = f2 − f4 + f5 + f6 − f7 − f8.



Moment-based boundary conditions

THE PLAN:

Formulate the boundary conditions in the moment basis, and
then transform them into into boundary conditions for the
distribution functions Bennett [2010].

Moments Combination of unknowns
ρ, ρuy , Πyy f2 + f5 + f6

ρux , Πxy , Qxyy f5 − f6
Πxx , Qxxy , Rxxyy f5 + f6

We can pick one constraint from each group. A natural choice is

ρuy = 0,
ρux = ρuslip,

Πxx = θρ+ ρu2
slip =⇒

∂uslip

∂x
= 0.



It really is quite simple

For no-slip, these conditions translate into

f 2 = f 1 + f 3 + f 4 + 2
(

f 7 + f 8

)
− ρ

3
,

f 5 = −f 1 − f 8 +
ρ

6
,

f 6 = −f 3 − f 7 +
ρ

6
,



Flow in a microchannel

No slip Slip flow Transition Molecular
Kn . 10−3 10−3 . Kn . 10−1 10−1 . Kn . 10 Kn & 10

In shear flow the LBE reduces to a linear second–order
recurrence relation =⇒ linear or parabolic profiles at all Kn

But we can capture flow in the bulk from with slip conditions



Maxwell–Navier boundary condition

Wall boundary conditions:

uslip = σKnH∂yu|wall , σ = (2− σa)/σa.

These can be expressed in terms of moments:

f 2 = f 1 + f 3 + f 4 + 2
(

f 7 + f 8

)
−
(

P − ρu2
slip

)
,

f 5 = −f 1 − f 8 + (P + ρu2
slip + ρuslip)/2,

f 6 = −f 3 − f 7 + (P + ρu2
slip − ρuslip)/2,

and since Πxy |wall =
2τ Π̄xy |wall
(2τ+∆t) = µ∂yu|wall ,

uslip = −
6
(
−f 1 + f 3 + 2f 7 − 2f 8

)
ρ(2τ + 1 + 6KnH)

.



Flow in a microchannel: asymptotic solution

We consider a viscous fluid in a channel with an aspect ratio
δ = L/H � 1.

The relevant dimensionless numbers are

Re =
ρoUoH
µ

, Ma =
Uo√
γRT

, Kn =

√
πγ

2
Ma
Re

An expansion in δ yields the leading–order solution

u(x , y) = − εRe
8Ma2 p′

(
1− 4y2 + 4σ

Kn
p

)
v(x , y) =

ε2Re
8pMa2

[
1
2

(p2)′′
(

1− 4
3

y2
)

+ 4σKnp′′
]

P (x) =

√
(6Kn)2 + (1 + 12Kn)x + θ(θ + 12Kn)(1− x)− 6Kn



Flow in a microchannel: Kn = 0.1



Convergence



Deviatoric stress in Poiseuille flow, Re = 100

For Newtonian fluids: Txx ∝ ∂u/∂x = 0
From BGK: Txx = −2µτ(∂u/∂y)2

“Analytic” is the exact solution from the continuous BGK
Boltzmann equation



Analysis of the stress field

We use the same ideas to solve the LBE stress field:

Πyy =
ρ

3
,

Πxy = −νρ
uj+1 − uj−1

2

These agree with the components of the Newtonian deviatoric
stress



Deviatoric stress

The T j
xx component of T is more interesting

3
(

4τ2 − 1
)(

T j+1
xx − 2T j

xx + T j−1
xx

)
− 12T j

xx =

4τ2ρ
(

u2
j−1 − 2u2

j + u2
j+1

)
− 16τ3ρG

(
uj+1 + uj−1 − 2uj

)
+6τρG

(
uj+1 + uj−1 + 2uj

)
.

The homogenous solution is

T j
xx = Amj + Bm−j ,

where A and B are constants and

m =
2τ + 1
2τ − 1

.



Deviatoric stress solution

The particular integral is

T j(PI)
xx = −2µτ

(
u′
)2

+ O(Ma3)

Recall the Navier–Stokes boundary condition

Πxx = Π
(0)
xx =⇒ Txx = 0

Hence

A =
mn−1 − 1

m
(
m2n−2 − 1

)T W ,

B =
mn (mn−1 − 1

)
m2n−2 − 1

T W ,

where T W is the particular integral evaluated at the wall.



Inconsistency
The stress with Navier-Stokes boundary conditions is

T j
xx =

(
mn−1 − 1

m
(
m2n−2 − 1

))T W mj +

(
Tmn (mn−1 − 1

)
m2n−2 − 1

)
T W m−j

− 2µτ
(
u′
)2

+ 3G2(1 + 4τ2)



Stress boundary conditions

A consistent boundary condition for the stress is

Πxx =
ρ

3
− 2τ + ∆t

2τ
Txx ,

=
ρ

3
+

12τ
ρ (2τ + ∆t)

Π
2
xy



Finite difference interpretation

Solving the lattice Boltzmann recurrence equation

3
(

4τ2 − 1
)(

T j+1
xx − 2T j

xx + T j−1
xx

)
− 12T j

xx

= 4τ2ρ
(

u2
j−1 − 2u2

j + u2
j+1

)
− 16τ3ρG

(
uj+1 + uj−1 − 2uj

)
+ 6τρG

(
uj+1 + uj−1 + 2uj

)
τ2 = 1/4 =⇒ no recurrence in non–conserved moments

τ2 = 1/6 =⇒ Lele’s compact finite difference scheme [Lele 92]



Two relaxation time LBE

Relax odd and even moments at different rates:

f i (x + ci , t + ∆t) = f i (x, t) − 1
τ+ + 1/2

[
1
2

(
f i + f k

)
− f (0+)

i

]
− 1

τ− + 1/2

[
1
2

(
f i − f k

)
− f (0−)

i

]
Solving the recurrence yields

3 (4Λ− 1)
(

T j+1
xx − 2T j

xx + T j−1
xx

)
− 12T j

xx

= 4Λρ
(

u2
j−1 − 2u2

j + u2
j+1

)
− 16ΛτρG

(
uj+1 + uj−1 − 2uj

)
+ 6τρG

(
uj+1 + uj−1 + 2uj

)
where Λ = τ+τ−



TRT results, Λ = 1/4

Txx = 2τ+µuu′′ − 2Λ

3

(
uu′′ +

(
u′
)2
)



Lid-driven cavity flow: Re = 7500



Lid-driven cavity flow: the numbers
Primary

Re = 400
Present Λ = 1/4 0.1139 0.5547 0.6055
Ghia et al. 0.1139 0.5547 0.6055
Sahin and Owens 0.1139 0.5536 0.6075
Re = 1000
Present Λ = 1/4 0.1189 0.5313 0.5664
Ghia et al. 0.1179 0.5313 0.5625
Sahin and Owens 0.1188 0.5335 0.5639
Botella et al. 0.1189 0.4692 0.5652
Re = 7500
Present Λ = 1/4 0.1226 0.5117 0.5352
Ghia et al. 0.1200 0.5117 0.5322
Sahin and Owens 0.1223 0.5134 0.5376

Note: Second order convergence of L2 error norm for global
velocity and pressure fields



Natural Convection

Flow is driven by density variation

∂u
∂t

+ u · ∇u = −∇P + Pr∇2u + RaPrg,

∂θ

∂t
+ u · ∇θ = ∇2θ,



Streamfunction and Temperature plots

Contours of flow fields for convection in a square cavity. From
left to right, Ra = 1000, Ra = 10000, Ra = 1000000



Nusselt numbers

Ra Study Nu

103 Present 1.1178
de Vahl Davis 1.118

106
Present 8.8249
Le Quere 8.8252
de Vahl Davis 8.800

108
Present 30.23339
Le Quere 30.225



Work with moments



Summary

The kinetic formulation yields a linear, constant coefficient
hyperbolic system where all nonlinearities are confined to
algebraic source terms.

The linear differential operators may be discretised exactly by
integrating along their characteristics, while the hydrodynamic
equations with their nonlinear convection terms are recovered
by seeking slowly varying solutions to the kinetic equations

Nonlinearity is local, non-locality is linear Sauro Succi

The LBE in its standard form does NOT capture kinetic effects
in the velocity field but more subtle effects manifest themselves
in the stress at O(τ2)

Analytic solutions of the LBE for simple flows gives insight into
its numerical and physical characteristics
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Knudsen boundary layers??


