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Abstract

1. Revisit the theoretical origins of empirical growth models

2. Discuss Solow and augmented Solow models

3. Both models: No explicit distinction between capital

accumulation and technological progress.

4. Augmented Solow model: treats human capital as additional

input, but technology is still exogenous

5. Discuss Schumpeterian growth models with creative destruction

and institutions

6. Schumpeterian models can address a wider range of questions –

about policy, institutions, etc.

7. Innovations in growth modeling – incorporation of institional

quality, product-market competition and non-linearities.



Plan

1. The Solow model with exogenous technology

2. Semi-endogenous augmented Solow model

3. Schumpeterian growth models

1. Innovation – driven growth

2. Democracy, innovation and growth

1. Conclusions



1. The Solow model with exogenous technology

Assumptions:

 No prices are involved - interested in real output as a measure

of real income.

 No choice in terms work/leisure (all workers work) or savings

(everybody saves a fixed portion of income).

 Savings are always invested.

 Output is shared between capital and labour in accordance with

their marginal products.

 No government (and hence no taxes or subsidies)

 No international trade or financial markets.



1. The Solow model with exogenous technology

 Solow aims to address an essential problem in growth models without 
technology. 

 Without technology per-capita output and per-capita capital do not grow at the 
steady-state. 

 This is inconsistent with empirical evidence - most advanced economies exhibit 
growth in per-capita variables in the long run. 

 Technology (A) is added into the model as follows:

Y(t) = f [K(t), A(t)L(t)] = K(t)α [A(t)L(t)]1-α (1)

 Y is real output, K is capital stock, A is technology, L is labour, AL is effective 
labour and α is elasticity of output with respect to capital stock. 

 AL implies that labour is more productive when the level of technology is higher 
(i.e., technology is labour-augmenting or Harrod-neutral).  



1. The Solow model with exogenous technology

 Technological progress and population growth are exogenous. 

 Hence, current levels of technology, labour  and effective labour at 
year (t) can be expressed as functions of initial values:

A(t) = A(0)egt;  

L(t) = L(0)ent and      

[A(t)L(t)] = [A(0)L (0)]e(n+g)t

Where A(0), L(0) and [A(0)L(0)] are initial levels; and g, n and n+g are 
growth rates technology, labour and effective labour. 



1. The Solow model with exogenous technology

 Define the following ratios:

𝑠 =
𝑆

𝑌
𝑆𝑎𝑣𝑖𝑛𝑔 𝑟𝑎𝑡𝑒;

𝑘 =
𝐾

𝐴𝐿
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑠𝑡𝑜𝑐𝑘 𝑝𝑒𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑜𝑢𝑟

𝑦 =
𝑌

𝐴𝐿
𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑜𝑢𝑟

 Then (1) can be written as:

𝑦 𝑡 =
𝐾(𝑡)𝛼

𝐴𝐿(𝑡)𝛼
= 𝑘(𝑡)𝛼 (2)

 According to (2), output per effective labour in year (t) is a positive 
function of capital stock per effective labour k(t) in that year. 



1. The Solow model with exogenous technology

Define the evolution of k(t):

 𝑘 𝑡 = 𝑠𝑦 𝑡 − 𝑛 + 𝑔 + 𝛿 𝑘 𝑡 = 𝑠𝑘 𝑡 𝛼 − 𝑛 + 𝑔 + 𝛿 𝑘 𝑡

 Steady-state occurs when  𝑘 𝑡 = 0. This yields a steady-state value of 

capital-to-effective-labour ratio (k*) in (3).

𝑠𝑘∗𝛼 − 𝑛 + 𝑔 + 𝛿 𝑘∗ = 0
→ 𝑠𝑘∗𝛼 = 𝑛 + 𝑔 + 𝛿 𝑘∗

→ 𝑘∗ =  𝑠 𝑛 + 𝑔 + 𝛿 1/ 1−𝛼 (3)



1. The Solow model with exogenous technology

Now substitute the steady-state value of capital - K* = k*[A(t)L(t)] = 

 𝑠 𝑛 + 𝑔 + 𝛿 1/ 1−𝛼 [A(t)L(t)] - into the Cobb-Douglas production 

function in (1). 

𝑌 𝑡 =  𝑠 𝑛 + 𝑔 + 𝛿  1 (1−𝛼)𝐴 𝑡 𝐿(𝑡)
𝛼
𝐴 𝑡 𝐿(𝑡) (1−𝛼) or

𝑌 𝑡 =  𝑠 𝑛 + 𝑔 + 𝛿  𝛼 (1−𝛼) 𝐴 𝑡 𝐿(𝑡) (4)

Take logs of both sides of (4):

𝑙𝑛𝑌 𝑡 =
𝛼

1−𝛼
𝑙𝑛𝑠 −

𝛼

1−𝛼
ln 𝑛 + 𝑔 + 𝛿 + 𝑙𝑛𝐴 𝑡 + 𝑙𝑛𝐿(𝑡) (5)



1. The Solow model with exogenous technology

Express (5) in terms of output per worker:

𝑙𝑛𝑌 𝑡 − 𝑙𝑛𝐿(𝑡) =
𝛼

1−𝛼
𝑙𝑛𝑠 −

𝛼

1−𝛼
ln 𝑛 + 𝑔 + 𝛿 + 𝑙𝑛𝐴 𝑡 (6)

Recall that A(t) = A(0)egt, then:

𝑙𝑛𝑌 𝑡 − 𝑙𝑛𝐿 𝑡 =
𝛼

1 − 𝛼
𝑙𝑛𝑠 −

𝛼

1 − 𝛼
ln 𝑛 + 𝑔 + 𝛿 + 𝑙𝑛𝐴 0 + 𝑔𝑡

Let 𝑙𝑛𝐴 0 = 𝜃 + 𝜀, then:

𝑙𝑛𝑌 𝑡 − 𝑙𝑛𝐿 𝑡 = 𝑙𝑛𝑦 𝑡 = 𝜃 + 𝑔𝑡 +
𝛼

1−𝛼
𝑙𝑛𝑠 −

𝛼

1−𝛼
ln 𝑛 + 𝑔 + 𝛿 + 𝜀

(7) 



1. The Solow model with exogenous technology

Equation (7) is in levels – but can be converted into a growth equation by 
taking the log difference between income in year t and income T years ago, 
giving: 

ln𝑦𝑡 − ln𝑦𝑡−𝑇 = Δ𝑦𝑡 = 𝜃 + 𝑔𝑡 − 0ln𝑦𝑡−𝑇 +
𝛼

1 − 𝛼
𝑙𝑛𝑠 −

𝛼/(1 − 𝛼) 𝑙𝑛(𝑛 + 𝑔 + 𝛿) + 𝑣 (8)

In (8), the convergence rate is  0/𝑇.

Assuming that the error term (𝑣) is not correlated with the regressors s, n, g
and 𝛿; equation (8) can be estimated with:

 OLS if data is averaged over the whole period. In this case, the term gt
disappears. 

OR 

 Dynamic panel data methods (e.g., GMM) if data has a panel structure, with 
averaging over shorter time periods. In this case, gt is captured by period 
time dummies



2. Augmented Solow model

 Omission of human capital in the original Solow model is 

problematic from theoretical and empirical perspectives. 

 Kendrick (1976) argued that more than 50% of the US capital stock 

in 1969 was human capital. 

 Lucas (1988) argued that there may be decreasing returns to physical 

capital accumulation, but increasing returns to human capital 

accumulation. 

 Hence, returns to total capital (physical + human capital) may be 

constant. 

 Then, absence of human capital in (7) or (8) causes omitted variable 

bias (OVB).  



2. Augmented Solow model

Then, augmented Solow model (with human capital)  can be written as 
follows:

Y(t) = f [K(t), A(t)L(t)] = K(t)αH(t)β [A(t)L(t)]1-α-β (9)

Here, capital is separated into physical capital (K) and human capital (H).

Following the routine above, we can write the augmented model as follows:

ln𝑦𝑡 − ln𝑦𝑡−𝑇 = Δ𝑦𝑡 = 𝜃 + 𝑔𝑡 − β0ln𝑦𝑡−𝑇 −
𝛼+𝛽

1−𝛼−𝛽
ln 𝑛 + 𝑔 + δ

+
𝛼

1−𝛼−𝛽
ln𝑠𝑘 +

𝛽

1−𝛼−𝛽
ln 𝑠ℎ + 𝑣 (10)

With convergence rate = β0/𝑇



Criticisms of Neoclassical models

From a heterodox perspective, they are criticised for:

• Assuming full employment of labour and full capacity utilization 

• Assuming no effective demand failures

• Having no ‘investment function’ in addition to and independently of the 
savings function (they overlook the scope for investment-led growth)

• Overlooking reverse causality between output growth and labour 
productivity (Verdoorn’s Law)

From a Schumpeterian perspective (Aghion and Hovitt, 2006), they are 
criticised for: 

 Failing to explain why the US has been growing faster than Europe since 
the mid-1990s - even though the average European saving rate has been 
higher than the US rate. Also, the average European capital-labour ratio has 
remained higher than the US ratio and has not decreased. 

 Failing to explain why the growth gap between Europe and the US has 
persisted despite the fact that the institutions of property rights (which affect 
technology adoption) have been similar. 



3. Schumpeterian models

In Schumpeterian theory aggregate output is produced by a continuum 
of intermediate products in accordance with:

𝑌 = 𝐿1−𝛼  
0

1
𝐴(𝑖)1−𝛼𝑥(𝑖)𝛼𝑑𝑖, (11)

In (11), product variety is normalized to unity and each 
intermediate product (xi) has a separate productivity parameter 
A(i).

Each sector is monopolized and produces its intermediate product with 
a constant marginal cost of unity. The monopolist in sector i faces a 
demand curve given by the marginal product: 

𝛼. (𝐴 𝑖 𝐿/𝑥(𝑖)1−𝛼 (12)



3.1 Schumpeterian models: Innovation-driven growth

Equating marginal revenue (α times the marginal product in 12) to marginal 
cost of unity yields the monopolist’s profit-maximizing intermediate output:

𝑥 𝑖 = 𝜑𝐿𝐴(𝑖),   where 𝜑 = 𝛼2/(1−𝛼) (13)

Using this to substitute for each x(i) in the production function (11) yields the 
aggregate production function:

𝑌 = 𝜃𝐴𝐿 (14)

where    𝜃 = 𝜑𝛼 and A is the average productivity parameter: 𝐴 ≡  0
1
𝐴 𝑖 𝑑𝑖

Innovations in Schumpeterian theory create improved versions of old 
products. An innovation in sector i consists of a new version whose 
productivity parameter A(i) exceeds that of the previous version by the 
fixed factor  𝛾 > 1. (We can call 𝛾 as the productivity premium on 
innovation) 



3.1 Schumpeterian models: Innovation-driven growth

Suppose that the probability of an innovation arriving in sector i over any short 
interval of length dt is    𝜇. 𝑑𝑡. 

Then the growth rate of A(i) is

𝑑(𝐴 𝑖 )

𝐴(𝑖)
.
1

𝑑𝑡
=  

𝛾 − 1 . 𝑑𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝜇. 𝑑𝑡
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 1 − 𝜇. 𝑑𝑡

(15)

Here, 𝜇 is the flow probability of innovation.

Therefore the expected growth rate of A(i) is: 

𝐸 𝑔 = 𝜇(𝛾 − 1) (16)

In any sector, the probability of innovation (μ) is a function of R&D 
expenditures and productivity:

𝜇 = 𝜆𝑅/𝐴 (17)



3.1 Schumpeterian models: Innovation-driven growth

In (17), R is the amount of final output spent on R&D; and 𝜆 is a flow 
parameter 

Dividing R by the productivity parameter (A) takes into account the force of 
increasing complexity. 

That is, as productivity increases the society must undertake more R&D 
expenditures just to keep innovating at the same rate as before.

The law of large numbers guarantees that the growth rate g equals the expected 
growth rate in (16). Thus, from (16) and (17) we have:

𝑔 = 𝛾 − 1 𝜆𝑅/𝐴 (18)

Let’s define the fraction of GDP spent on R&D as: 

𝑛 = 𝑅/𝑌 (19)



3.1 Schumpeterian models: Innovation-driven growth

Combining (14), (18) and (19), we obtain: 

𝑔 = 𝛾 − 1 𝜆𝜃𝑛𝐿 (20)

Thus, Schumpeterian models imply that the way to grow rapidly is:

 Not to save a large fraction of output; but 

 To devote a large fraction of output (n) to R&D.

Further implications of Schumpeterian models:

 The higher the productivity premium (𝛾) the faster is growth

 Reduced market power (increased competition) reduces incentive for 

R&D and harms growth! 

 But more recent models show that the relationship between 

competition and growth has an inverted-U shape



3.2 Schumpeterian models: democracy and growth

New Schumpeterian models draw on insights from institutional economics. 

Acemoglu, Aghion and Zilibotti (2006) propose a model that differentiates 

between economic growth in developed and developing countries. 

Growth in developing countries is driven by adoption and imitation of existing 

technologies and investment in existing lines of business.

Growth in advanced (frontier) economies is driven by innovation. 

Other insights from AAZ (2006):

Equilibrium organization of production and the broader institutions of the 

society may differ depending on: 

(a) the level of development; and 

(b) the distance of the country’s technology to the frontier technology. 



3.2 Schumpeterian models: democracy and growth

c) Openness is more important for growth in close-to-frontier countries 

compared to distant-to-frontier countries

d) High entry barriers are more detrimental to growth as the country 

approaches the frontier 

e) The more frontier an economy is, the more growth in this economy 

relies on research-oriented education

f) The correlation between democracy and innovation/growth is more 

positive and significant in more frontier economies. 

In what follows, we will provide a proof of prediction (f).

In equilibrium, the innovation efforts is given by:

𝑧𝑗𝑡 =  𝑧 =
𝛽𝜋

𝜆
(21)

Here,  𝑧 is equilibrium innovation effort; 𝛽 is the level of democracy; 𝜋 is 

profits and 𝜆 is cost of R&D flows. 



3.2 Schumpeterian models: democracy and growth

Taking derivative with respect to democracy:

𝛿  𝑧

𝛿𝛽
=

𝜋

𝜆
> 0

Equilibrium innovation effort is increasing in democracy level:

Democracy fosters higher levels of innovation as it reduces barriers to 
entry.

Now we can turn to the relationship between democracy and growth.

The average productivity of a country at the beginning of the period

𝐴𝑡−1 =  0
1
𝐴𝑗𝑡𝑑𝑗 = 𝜇  𝐴𝑡−1 + (1 − 𝜇)  𝐴𝑡−2 (21)



3.2 Schumpeterian models: democracy and growth

Average productivity at the end of the period is:

𝐴𝑡 = 𝜇 𝛽  𝑧𝛾  𝐴𝑡−1 + 1 − 𝛽  𝑧  𝐴𝑡−1 + (1 − 𝜇)  𝐴𝑡−1 (22)

In (21) amd (22),  𝐴 is productivity; 𝜇 is probability of innovation; 

𝛽 is the level of democracy experienced; and  𝑧 is innovation 

effort.

Then the growth rate of average productivity over the period is:

𝑔𝑡 =
𝐴𝑡−𝐴𝑡−1

𝐴𝑡−1
= 𝛾

𝜇𝛽  𝑧 𝛾−1 +1

𝜇 𝛾−1 +1
(23)



3.2 Schumpeterian models: democracy and growth

Taking partial derivative with respect to democracy (β), we can 

see that democracy is growth enhancing:

𝛿𝑔𝑡

𝛿𝛽
= (  𝑧 +

𝛿  𝑧

𝛿𝛽
𝛽)(

𝛾𝜇 𝛾−1

𝜇 𝛾−1 +1
> 0 (34)

Moreover, democracy is more growth enhancing the closer the 

country is to the world technology frontier (i.e., the higher is the 

probability of innovation):

𝛿2𝑔𝑡

𝛿𝛽𝛿𝜇
= (  𝑧 +

𝛿  𝑧

𝛿𝛽
𝛽)(

𝛾 𝛾−1

[𝜇 𝛾−1 +1]2
> 0 (35)



Conclusions

 Despite restrictive assumptions, Neoclassical models have been 

successful in estimating factor shares until mid-1990s.

 However, they are silent on skill-biased technical change and 

falling labour share

 Convergence rates estimated with Neoclassical models vary 

between studies - with a mean of 4.3% and minimum and 

maximum values of 1.43% and 8.34% respectively (Abreu et 

al., 2005). These rates are much higher than the 2% implied 

factor shares of 79% and 30% for labour and capital 

respectively;

 Neoclassical models have also been criticised for failing to 

explain the difference in growth rates of Europe and the US 

despite similar institutional characteristics and similar or even 

higher saving rates or capital-labour ratio in Europe. 



Conclusions

 In Schumpeterian models, growth results from quality-

improving innovations. 

 Unlike neoclassical models, they highlight the importance of 

key economic variables such as the country’s distance to the 

technological frontier, its institutional quality or its degree of 

openness. 

 This feature enables Schumpeterian models to address policy-

relevant questions.

 However, Schumpeterian models share the same weakness as 

neoclassical models: they overlook the effects of deficient 

demand or other demand-side constraints stemming from 

balance of payments deficits.


