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Introduction

Infectious Diseases
Past, Present, and Future
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| DEATHS FROM ALL CAUSES EACH WEEK
EXPRESSED AS AN AMNUAL RATE PER 1000
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The Situation-in 2015-2017
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« 5.9 million children under age of five died in 2015, i.e.
16 000 every day.

* There are Over 37 million.people infected with HIV.

* 1 million people died from AIDS in 2015.

 The recent outbreaks of Ebola have led to 11000 of
deaths in 2015.
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< Economielmpact of infectie
Diseases is terrible
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West Africa suffered up to $32 billion loss
during Ebola outbreak.
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wWhat mathematical mo\d
do to help?
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To know How large Will the Outbreak be and how fast the epidemic
transmits.

To assist the decision makers to put their strategies to control the diseases.

To understand the dynamics and transmission of diseases to activate the
vaccination programs and to test Vaccine efficacy in blocking disease
transmission.



Models
Bernoulli Model

‘I simply wish that, in a matter which
So closely concerns the well-being of
mankind, no decision shall be made
without all the knowledge which a little
analysis and calculation can provide.”

Daniel Bernoulli,

Daniel Bernoulli
1700-1782



Differential Equations Models
of infectious diseases
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THE BASIC REPRODUCTION NUMEEﬁ?‘RO”

“Ry” Is The mean number of secondary
infections generated by a single infected in a
completely susceptible population

Conditions for an Epidemic

@ If Ry > 1 an epidemic occurs in the absence of intervention.
@ If Ry < 1 the disease dies out.

R, for the Basic SIR Model= g



But these classical integer models
carry no info about memory of Host
or vector.



mathematical models
with memory

» Delay differential equations
* Fractional differential equations



Fractional Calculus
Brief Summary



History of fractional calculus

What if the order
will be n=1/2 ?

™

It will lead to a paradox
from which one day
useful consequences will
be drawn _

L’>Hopital

(1::2?Tgis) (1661-1704)




Let f : [a,b] = R be a function, o a positive real number, n the integer
satistying n — 1 < o < n, and [' the Euler gamma function. Then,

1. the left and right Riemann-Liouville fractional integrals of order a are

defined hy
1 [ .
J%f(z) = — | (z=0*1f()dt,
ofe) = g | o=t 0
and
1 b a—1 ¢
Ib f( ) (“) (f—:l’f) j(f)dt
respectively;

2. the left and right Riemann-Liouville fractional derivatives of order a are
defined by

d" = 1 T
(D2 f(a) = ol () = [ o=t st

['(n—a)dz™




and

dﬂ (_1)1’1 d?l

b
RpfaN - AN n—o = aan-—o-1c¢
Dy [(2) = (-1) oy ey (&)= To—d (Lr”/r(f r) f(t)dt.

respectively:

3. the left and right Caputo fractional derivatives of order a are defined by

Choef N n—&f‘m 2 O I : ol {
D2 (@) =l dzm flz) = ['(n-a) /ﬂ #=4) AU
and
n—o d" 1 ’ n n—a—1 g(n)
D31 = (e~ ) = g | (1P

respectively.




Fractional derivatives have the unique
property of capturing the history of the
variable, that is, they have memory. This
cannot be easily done by means of the
integer order derivatives.



WHAT IS THE PHYSICAL MEANING OF THE
FRACTIONAL ORDER DERIVATIVE?

The physical meaning of the fractional order is
considered to be the index of memory. In the
models with memory, a memory process usually
consists of two stages:

* M. Du, Z. Wang and H. Hu, Measuring memory with the order of fractional derivative. Sci. Rep.
3(2013).

* K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and
synchronization of electrically coupled neuron systems, Comput. Math. Appl. 64 (2012)
3329-33309.




Two main advantages of using
fractional-order models:

* The system response at any time will be affected by
all previous responses.

* Fractional-order parameter enriches the system
performance through increasing one degree of
freedom which extends the system to more space.



Memory of immune system



virus-infected cell

. cancer cell
, bacterium-infected cell
killer T cell

The killer T cells terminate cancer cells
and cells infected by a virus or bacteriumn,




IMMUNE SYST
WITH MEMORY

D%(x) = x — axy — bxz,

D%(y) = —cy + xvy,
D%(z) = —ez + xz.

y,and z are two immune effectors attacking an
antigen x.
where 0 < a < 1 is the index of memory.

A.H. Hashish, E. Ahmed, Towards understanding the immune system, Theor. Biosci. 126 (2-3)
(2007) 61—-64.
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D*(T) =s—dT — (1 —n)BVT,
D*(I) = (1 =n)BVT =6 1(1 —1/c3),
DY) = (1—g,)pl —cV.

I represents uninfected hepatocytes,
/ represents infected hepatocytes,

I/ represents virus Density,

and 0 < a < 1 is the index of memory.

E. Ahmed and H.A. EI-Saka, On fractional order models for Hepatitis C, Nonlinear Biomed.
Phys. 4 (2010).
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Arafa et al. Nonlinear Biomedical Physics 2012, 61
http://waww.nonlinearbiomedphys.com/content/6/1/1 N NOMNLINEAR BIOMEDICAL

PHYSICS

RESEARCH Open Access

Fractional modeling dynamics of HIV and CD4"
T-cells during primary infection

L o E e
AAM Arafa'’, SZ Rida' and M Khalil

Abstract
n this paper, we introduce fractional-order intc a model of HIV-1 infection of CD4™ T cells. We study the effect of
the changing the average number of viral particles N with different sets of initial conditions on the dynamics of
the presented model. Generalized Euler method (GEM) will be used to find a numerical solution of the HIV-1
infection fractional order model.

D* (T) =s— KVT — dT + bl,
D% () = KVT — (b + 8)I,
DFs(V) = N&I —£V.




y

i L i " L J t
100 200 00 400 500 &00

Figure 9 The concentration of the free HIV virus particles at N
= 1600 in the 1** case. Gray solid line (a = 1), Dotted line (@ =
099), Black solid line (o = 0.93).
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Figure 11 The concentration of the infected CD4™ T cells at N
= 1600 in the 2™ case. Gray solid line (& = 1), Dotted line (o =
0.99), Black solid line (@ = 0.95).




World Scientific

Vol. 7, No. 4 (2014) 1450036 (11 pages) e

(©) World Scientific Publishing Company
DOI: 10.1142/51793524514500363

International Journal of Biomathematics \\re

A fractional-order model of HIV infection: Numerical solution
and comparisons with data of patients

s —dl'— kEVT,
VI — (0 +d.E)T™,
NOT™ — ¢V,

pTﬂ'ﬂ —dpkl'.




vhere 0 < aq, an, a3z, ag < 1, T'(t) is the density of uninfected target cells, T*(¢) is
the density of productively infected cells, V' (f) is the density of the free virus, and
,(t) is the density of the effector cells E(t). The constant s represents a source of
healthy cells and d is their death rate, £ is the infection rate, and ¢ is the death
ate of productively infected cells. The killing rate of infected cells by effector cells
is represented by d,. The inclusion of the term d,ET*, allows for the removal of
productively infected T-cells due to a cell mediated immune response. N is the
number of virions produced by an infected cell during its life span, and ¢ is the

riral clearance rate constant. Effector cells are assumed to be generated at a rate

proportional to the level of productively infected cells, and die at a rate dg [7, 20].




Table 1. The parameter values.

Patient dz x 10~% ; N d

22 5101 0.013
10 : 2966 0.02
5.4 5617 0.0065
6.8 668 0.0046
1.0 : 3843 0.017
7.2 1341 0.012
1.0 i 4493 0.017
1.0 6689 0.0085
1.0 1415 0.006
0.7 186210 0.0043
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Patient 7 (o = 1 (the black line), Patient 8 (@ = 1 (the black line),
when o = 0.60 (the gray line when a = 0.75 (the gray line
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Patient 1 (a = 0.7 (the black line), ~ Patient 8 (a = 0.65 (the black line),
when o = 0.35 (the gray line)) when o = 0.5 (the gray line))




MODELS OF VECTOR BORNE-DISEASES WITH MEMORY
ON THE HOST AND THE VECTOR

Mathematical Biosciences

Volume 263, May 2015, Pages 18-36

A generic model for a single strain mosquito-transmitted
disease with memory on the host and the vector

Tridip Sardar 2@ Sourav Ranat Sabyasachi Bhattacharya @ Kamel Al-Khaled © 9@ Joydev Chattopadhyay
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MODELS OF VECTOR BORNE-DISEASES WITH MEMORY
ON THE HOST AND THE VECTOR

« Basically, the memory of human is closely related to the awareness.

« The memory of vector is related to their blood feeding behavior
like detecting host location and host selection.



K 1
_ bBiSyly

DY(Iy) = —rx (ty + vedln,

D*(Ry) = vyl — UuRu,

D(S,) = A — % _mS,,
De(Iy) = % —mly

Where 0 < a <1, Sy, Iy and Ry are the populations of susceptible humans,
infected human, and recovered human respectively. Sy and I, are the
populations of susceptible mosquitos, infected mosquitos. The total human
population K at time t is denoted by Ny where Ny = Sy + Iy + Ry. The authors
did not consider any recovered class in mosquito population because the life
expectancy of mosquito is very short, so Ny, = Sy + Iy.

T. Sardar, S. Rana, S. Bhattacharya, K. Al-Khaled, J. Chattopadhyay, A generic model for a single
strain mosquito-transmitted disease with memory on the host and the vector, Math. Biosci. 263

(2015) 18-36.



DEL'S OF VEGTOR BORNE DISEASES WIT
" ON THE HOSTAND THE VECTOR"

b By Syly
K ’

D*(Sy) = uy (K — Sy) —

b*B,Syl
D*(Iy) = ;{H - (g + v )ly,
D*(Ry) = Yuly — tnRuy,
bPB,14S
Dﬁ(SV) — Az - B?{H v - mﬁSV,
bPB,1,S
DA(I,) = ‘8;{” Y —mPl,.

Where0<a <1,0<f <1
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The infection perS|sts if the basic reproduction number Ry, > 1, and
dies out if Ry < 1.

b bB.A
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\ m mK(uH + yH)
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A VARIABLE FRACTIONAL ORDER
NETWORK MODEL OF ZIKA VIRUS

Journal of Frachional Calculus and Applicalions
Vol. 9(1) Jan. 2018, pp. 204-221.

IS5N: 208M-5858.

http://feag-egypt.com/ Journals/ JFCA f

A VARIABLE FRACTIONAL ORDER NETWORK MODEL OF
ZIKA VIRUS

M. KHALIL A A M ARAFA |  AMAAL SAYED
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Variable Fractional-Order Derivatives- "

(1) Left Caputo derivative of order a(t) is defined by

e 3 .

a

(i1) Right Caputo fractional order derivative of order «(?) is defined by

s ) s
D ()

b
/ (r—=t) Y f ()dr,0<a(t) <1
L
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A VARIABLE FRACTIONAL ORDER
NETWORK MODEL OF ZIKA VIRUS

DR =LY B )8,
S4+I+H "

.E' xa(t) I l. / ) ":-’ 'E f E" I g i . I
! Sl = : —YE S )L,
| A LSl' _; J'!r —|— I_ \ IL A

ealt ) R | t) =¢ Lo (T "Ir 4. 58




FIGURE 2. The dynamic trajectory S(¢) at a(t) = 0.7 (the solid line)
and at a(t) = 0.7 — 0.01sin(xt) (the dashed line)
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FicURE 10. The dynamic trajectory S(t) at «t) = 1 (the solid line)
and at a(t) = 1 — 0.004¢ (the dashed line).
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Numerical Solutions of Fractional
Order Models



Applied Mathematical Modelling 37 {2013) 2189-2196

Contents lists available at SciVerse ScienceDirect - rane AAHAL

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

The effect of anti-viral drug treatment of human immunodeficiency
virus type 1 (HIV-1) described by a fractional order model

A.AM. Arafa®*, S.Z. Rida?, M. Khalil®

 Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt
® Department of Mathematics, Faculty of Engineering, Modern Science and Arts University (MSA), Giza, Egypt

D™ (x) =5 — ux — fxz.
D*(y) = Bxz — &y.

D*(z) =cy —7yz.




The numerical results of x{t).
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The numerical results of W)
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The numerical results of A t).

r

GEM

HPM

HAM

RK4

0
0.2
0.4
0.6
0.8
1

1

0.69030
0.51152
0.41069
0.35656
0.33053

1

0.69071
0.51208
0.41394
0.37749
0.42419

1

0.69059
0.51237
0.409594
035148
0.32869

1

0.69070
0.51190
0.41103
0.35654
033073




. ? . r & &
100 00 200 40 s00 100 00 300 400 200

Fig. 2. The densities of the infected CD4" T-cells y(t), when & = 0.1(a), and £ = 0,05 (b): gray solid line (x = 1), dotted line (x = 0.99), black solid line (= 0.95).
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